NIH Simplifies Policy on Late Applications

NIH might give you a two-week grace period on late applications. For details, see the Notice issued Dec 2014.

Examples of Reasons Why Late Applications Might Be Accepted

  • Death of an immediate family member of the PD/PI (or MPI).
  • Sudden acute severe illness of the PD/PI (MPI) or immediate family member.
  • Temporary or ad hoc service by a PD/PI on an NIH advisory group during the two months preceding or the two months following the application due date. Examples of qualifying service include: participation in an NIH study section/special emphasis panel, NIH Board of Scientific Counselors, Program Advisory Committee, or an NIH Advisory Board/Council. Qualifying service does not include participation in NIH activities other than those involved in extramural/intramural peer review or NIH Advisory Council/Board service.
  • Delays due to weather, natural disasters, or other emergency situations, not to exceed the time the applicant organization is closed.
  • For PD/PIs who are eligible for continuous submission (http://grants.nih.gov/grants/peer/continuous_submission.htm), the late application policy applies to activities not covered under the continuous submission policy (i.e., other than R01, R21, and R34 funding opportunities that use standard due dates).

 

Examples of Reasons Why Late Applications Will Not Be Accepted

  • Heavy teaching or administrative responsibilities, relocation of a laboratory, ongoing or non-severe health problems, personal events, participation in review activities for other Federal agencies or private organizations, attendance at scientific meetings, or a very busy schedule.
  • Review service for participants other than a PD/PI or MPI, acute health issues or death in the family of a participant other than a PD/PI or MPI.
  • Problems with computer systems at the applicant organization, problems with a system-to-system grant submission service, or failure to complete or renew required registrations in advance of the application due date.
  • Failure to follow instructions in the Application Guide or funding opportunity announcement.
  • Correction of errors or addressing warnings after 5 PM local (applicant organization) time on the application due date. Applicants are encouraged to submit in advance of the due date to allow time to correct errors and/or address warnings identified in the NIH validation process.

– See more at: http://grants.nih.gov/grants/guide/notice-files/NOT-OD-15-039.html#sthash.flUVBOvk.dpuf

NIH Grantwriting Webinar Series Begins in February 2015!

We are happy to announce that in addition to one-on-one consulting, workshops, and seminars, we are now adding webinars to our menu of options to help NIH grantees. Upcoming webinars:

Mistakes Commonly Made On NIH Grant Applications
Benefit from the knowledge gained by a grantwriter who reads dozens of Summary Statements per year.

Wednesday 4 February, 11am-12:30pm EST or Thursday 12 February, 11am-12:30pm EST

NIH Submission Strategies
Take steps to optimize your chance of success before you write.

Wednesday 11 February, 11am-12:30pm EST or Thursday 19 February, 11am-12:30pm EST

How To Write The Specific Aims Of An NIH R01
Learn how to make the most important section of your submission compelling and persuasive.

Wednesday 25 February, 11am-12:30pm EST or Tuesday 3 March, 11am-12:30pm EST

Learn More!

Ketamine — A New Drug Treatment For Depression?

Credit: Koratmember at FreeDigitalPhotos.net

Remember ketamine, the old veterinary (and sometimes street) drug? Apparently it rapidly and significantly reduces anhedonia in those with treatment-resistant bipolar disorder, according to a new study.

Anhedonia, which is a lack of interest in activities that once gave a person pleasure, is a key feature of treatment-resistant bipolar disorder. According to a recent NIH-funded clinical trial, ketamine restored pleasure-seeking behavior independent of its other antidepressant properties in these patients. What’s more, it did so about 40 minutes after a single infusion, and the effect lasted as long as 14 days.

To me the most interesting part of this study is that ketamine did not act on the midbrain areas typically involved in depressive symptoms. Rather, PET scans on patients in the depressive phase of bipolar disorder showed that after ketamine infusion, there was activity in the dorsal anterior cingulate cortex (dACC). This region lies deep within the brain, resting on the medial surface of the frontal lobes. Its precise role remains somewhat elusive, though it is thought to govern conscious control of goal-directed behavior. The most recent significant study I could find on its function was a 2012 paper in Nature suggesting that the dACC is involved in optimizing behavioral adaptations to continuously evolving demands by predicting the difficulty of a task.

“Our findings help to deconstruct what has traditionally been lumped together as depression,” explained Carlos Zarate, M.D., of NIMH. “We break out a component that responds uniquely to a treatment that works through different brain systems than conventional antidepressants — and link that response to different circuitry than other depression symptoms.”

Imaging studies similar to the one just published are underway in patients with major depression, though results are not yet available. Other studies have suggested that ketamine may be exerting these effects through glutamate and dopamine pathways. Research is underway to explore easier methods of drug delivery, such as nasal spray.

Of late, ketamine has been studied for its rapid antidepressant properties, providing relief within hours rather than the weeks required for traditional medications to work. At present, ketamine is not FDA approved for treatment of depression and it is still used primarily in a veterinary setting.

Ketamine is an NMDA receptor antagonist, though it also inhibits reuptake of dopamine, serotonin, and norepinephrine. It was developed in 1962 and has been used in both humans and animals. It is categorized as a dissociative agent. It has been used for general anesthesia, sedation, and as a pain killer. Side effects include amnesia and agitation, and its street use has led to hallucinations, delirium, and death.